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ABSTRACT

Linear inverse modeling (LIM) is a statistical technique based on covariance statistics that estimates the

best-fit linear Markov process to a multivariate time series. An integral, often-ignored part of the technique

is a test of whether or not the linear assumptions are valid. One test for linearity is the so-called tau test.While

this test can be trusted when it passes, it sometimes fails when it ought to pass. In this article, we discuss one of

the reasons for spurious failure, the ‘‘Nyquist issue,’’ which occurs when the lagged covariance matrix used

in the analysis is numerically performed at a lag greater than or nearly equal to half the period of a natural

mode of variability represented in the time series. As an illustration relevant to a systemwith many degrees of

freedom, but simple enough to solve analytically, we consider a four-dimensional system consisting of two

modal pairs. Within this framework, we suggest one solution that can be applied if the time series are long

enough. It is hoped that awareness of this issue can prevent misinterpretation of LIM results.

1. Introduction

Linear inverse modeling (LIM) is an empirical tech-

nique of estimating the best linear stochastic model

consistent with a set of multivariate data (Penland 1989;

Penland and Sardeshmukh 1995a). As with autoregressive

processes, LIM combines the lagged and contempora-

neous covariancematrices to estimate the relevant product

matrices. However, unlike autoregressive processes, LIM

estimates the operator in a continuous stochastic differ-

ential equation as well as the correlation structure of the

driving white noise. These operators can then be used to

diagnose whether or not the governing dynamical system

may be described as a linear stochastic differential equa-

tion with constant coefficients. Once linearity has been

established, forecasts with a theoretically estimated error

can be made, and a variety of analyses can be performed

to investigate the dynamical relationships between the

constituent variables. Of course, these analyses depend

on the fidelity of a linear model to the real dynamical

system; the mechanics of the analysis, after all, can be

applied to any multivariate time series, regardless of

the underlying dynamics.

Assessing this fidelity requires a strict test for the val-

idity of LIM, and LIM is valid for time series generated

by dynamical systems on a time scale where nonlinear

interactions are so fast and so chaotic that they may be

approximated by Gaussian white noise terms in a limiting

differential equation. That is, the ultimate source of what

a coarse-grained system sees as Gaussian white noise may

be neither Gaussian nor white at some (unresolved) time

scale. The integrated effect of rapidly varying nonlinear-

ities is subject to the central limit theorem, so that a more

slowly varying component of themultiscale system cannot

be distinguished from a process driven by Gaussian white

noise when represented by a coarse-grained time series

(Papanicolaou and Kohler 1974; Hasselmann 1976).

As time series analysis is inherently statistical, testing

for linearity is also statistical. Ideally, this test would pass

only when the generating dynamical system is linear and

fail only when it is not. In practice, however, statistical

tests have a (hopefully small) probability of delivering a

false result. Here we consider a test for linearity, the ‘‘tau

test‘‘ (e.g., Penland 1989), against a null hypothesis that

the dynamical system generating a multivariate time

series is nonlinear on the time scales of interest, that is,

that nonlinearities cannot be estimated as a linear pro-

cess with either additive ormultiplicativeGaussianwhite

noise. The tau test consists of estimating linear operators

based on the lagged covariance matrices at a variety of

lags to (e.g., Penland and Sardeshmukh 1995a; Winkler

et al. 2001; Shin et al. 2010; Liu et al. 2012a,b). Linear

operators so estimated are expected to be independent

of to. This tau test is generally trustworthy when itCorresponding author: Cécile Penland, cecile.penland@noaa.gov
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passes; Penland and Sardeshmukh (1995a), for ex-

ample, have shown the spectacular failures of this test

when applied to the Lorenz (1963) system in its cha-

otic regime. Unfortunately, the tau test is notorious

for also failing in some cases when the underlying

dynamics should indeed be approximated as linear.

It has been shown that the tau test can spuriously fail

for several reasons. If the statistics are nonstationary,

the tau test will fail (Penland and Sardeshmukh 1995a).

If the state vector under consideration does not rep-

resent all of the important variables, the tau test will

fail (Penland and Ghil 1993). If the time series is seri-

ously corrupted with observation errors, the tau test will

fail (Penland 1998). Perhaps the most frustrating cause

of tau-test failure, however, is the near inevitability of

‘‘Nyquist lags’’ (Penland and Sardeshmukh 1995a, their

appendix B). A Nyquist lag occurs when the lag to of

the covariance matrix used to estimate the linear op-

erator is near half the period of an intrinsic oscillatory

mode of the system. Then, that mode cannot be accu-

rately resolved numerically. If this mode is an important

constituent of the dynamics, the numerically estimated

linear operator is significantly corrupted, and the tau

test fails.

When LIM is applied to geophysically relevant data-

sets, the large number of degrees of freedom requires

numerical eigenanalysis, and the Nyquist problem is in-

evitable. It is the purpose of this article to discuss the

Nyquist problem in LIM and to show how it can be re-

solved in a system that is simple enough to be solved

analytically, but where the presence of multiple oscillatory

modes requires a sequential, mode-by-mode method

of handling the problem. We do not claim to solve the

problem in such a general way that it is easy to automate.

However, as shown below, this solution can be useful

for real world problems, such with a reduced model of

El Niño.We first review LIM and present the difficulties

associated with the Nyquist problem. This section in-

cludes a possible solution to the problem described step

by step for a single modal pair. The next section, ex-

ample 1, shows how the mode-by-mode procedure can

be applied to a simple four-dimensional system (two

modal pairs) where the analytical solution is known.

This section describes in detail both how the estimated

linear operator can be corrupted when the unmodified

modes are combined and how the linear operator is

recovered by proper adjustment of the modes. We also

show the kind of evidence that would suggest there is a

Nyquist problem in the first place. Finally, to illustrate

practical problems, we apply the Nyquist correction to

a reduced, empirically derived model of El Niño. The
formalism and terminology throughout this article are

similar to those used in many previous publications by

the American Meteorological Society (e.g., Farrell and

Ioannou 1993; Penland and Sardeshmukh 1995a,b; DelSole

1996; Sheshadri et al. 2018, and references therein).

Relevant theoretical details concerning matrix methods,

for example, the Cayley–Hamilton theorem referenced

below, may be found in the textbook by Bronson (1970).

2. Review of LIM and the Nyquist problem

Consider an M-dimensional vector x(t), the ith com-

ponent xi(t) of which represents a zero-mean observa-

tion at location i and time t. We wish to show whether

the governing dynamics of this system obeys a linear

Markov process. In this study, we consider only additive

noise, that is, a stable linear process called amultivariate

Ornstein–Uhlenbeck (OU) process. The equation for an

OU process is

dx

dt
5Lx1 j , (1)

where L is a constant matrix and where j is a white

noise vector with covariance matrix hjjTidt5Q, and

where angle brackets indicate ensemble average. Note

that Eq. (1) integrated over a unit time step is equivalent

to a first-order autoregressivemodel x(t)5A x(t2 1)1 e,

but with specific functional forms for e and A. If Q is

constant, the statistics of x(t) are stationary and we may

treat the time average as the ensemble average. If Q is

periodic with period T, then the statistics of x(t) are also

periodic with period T and care must be taken in the

estimation of ensemble averages. For Q stationary,

the lagged autocovariance matrix of x is related to the

contemporaneous autocovariance matrix as

hx(t1t
o
)xT(t)i5 exp(Lt

o
)hx(t)xT(t)i . (2)

For Q periodic, Eq. (2) holds with the angle brackets

now including a time average over an integer number of

periods T. If L itself is a function of time, of course, the

tau test will fail. For expository purposes, we will here-

after assume stationary statistics unless otherwise in-

dicated. We also use the notation C(t)[ hx(t1 t)xT(t)i.
As suggested by Eq. (2), we use the time series to

estimate the Green function matrix G(to):

G(t
o
)5C(t

o
)C(0)21 . (3)

Note that when to 5 1, Eq. (3) is also starting point of

principal oscillation pattern analysis (Von Storch et al.

1988). Since G(to) and L have the same eigenmodes

fuag and adjoints fvag, G(to) and L can be similarly

expanded as a sum over the modal index a from 1 toN,

where N is the number of modes:
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where ga(to) is the eigenvalue of G(to) corresponding

to eigenmode ua and ofGT(to) corresponding to adjoint

va, and where ba is the eigenvalue of L corresponding

to eigenmode ua and of LT corresponding to adjoint va.

Because thematricesG(to) and L satisfy their respective

characteristic equations (Hamilton 1853; Cayley 1858;

Bronson 1970), their eigenvalues are related in the same

way that they are, that is,

g
a
(t

o
)5 exp(b

a
t
o
) . (5)

Thus, the eigenvalue ba can be estimated by taking the

complex natural logarithm of ga(to) and dividing by to,

after which L is constructed using Eq. (4b). Note that

Eqs. (4) are valid if the eigenmodes and adjoints are

normalized so that they form a binormal set, that is, if

ua
Tvb 5 dab.

One version of the tau test consists of checking

that the eigenvalues ba are independent of to (see

below). Another version considers the norm of L

itself (e.g., Shin et al. 2010; Liu et al. 2012a,b). Yet

another version uses the expansion Eq. (4a) to gen-

erate the Green function G(t) at other lags using the

relation

g
a
(t)5 [g

a
(t

o
)]t/to (6)

and then compares the expected autocovariance map

at that lag with the autocovariance estimated directly

from the time series (e.g., Winkler et al. 2001). A re-

lated version involves comparison of the power spec-

trum estimated from the measured time series with

that estimated from ensemble members generated

numerically from the results of LIM applied to that

time series (Newman 2007). One can also compare

forecast errors estimated with sets of Green func-

tions estimated at different lags (e.g., Penland and

Sardeshmukh 1995a).

It is here that the Nyquist issue arises. The eigenvalues

fga(to)g are either real, or they and their associated

eigenvectors occur in complex conjugate pairs. Recall

that L is a stable, real, linear operator, and its eigen-

values fbag are either real and negative, or complex

with negative real part. That is, the deterministic evo-

lution of the complex eigenmode consists of exponential

decay with a rate Re(ba) and an oscillation with angular

frequency Im(ba). These values are estimated using the

complex logarithmof ga(to), which ismultivalued.Hence,

for to close to p/Im(ba), an automated eigenanalysis

system will not be able to identify the imaginary part

of the mode. We thus call p/Im(ba) a Nyquist lag, and

there are as many Nyquist lags as there are complex

modal pairs. For to larger than p/Im(ba), the automated

eigenanalysis package returns an estimated eigenvalue

g0a(to)5 exp[bato 6 (2pn)i] or its complex conjugate, the

logarithm of g0a(to) divided by to is not constant, and

the tau test fails. The quadrant of the complex plane in

which the automated package locates g0a(to) may de-

pend on the eigenanalysis package or perhaps even

the compiler.

At first, the situation does not seem so grave. After all,

if the eigenmode and adjoint do not change, it seems that

all one would have to do is adjust the eigenvalue appro-

priately and proceed with the expansion Eq. (4b). How-

ever, things are a little more complicated. Once to is big

enough to change the sign of sin[Im(bato)], the multi-

valued nature of the inverse trigonometric functions comes

into play. Say, for example, the decay time of the ath ei-

genvalue is 5 time units (tu) and its period is 10tu. That is,

say the eigenvalue ga(to 5 4tu) is exp[(20:21 2pi/10)4]

and ga11(to 5 4tu) is its complex conjugate. The auto-

mated eigenanalysis routine returns the complex value

ga(to)5 exp(20:8)fcos(8pi/10)1 i sin(8pi/10)g associated
with the mode ua At the same time, the eigenvalue associ-

ated with ua11 is exp(20:8)fcos(8pi/10)2 i sin(8pi/10)g.
Now, letting to 5 8tu, the routine returns ga(to)5
exp(20:16)fcos(16pi/10)1 i sin(16pi/10)g. However, this

equals exp(20:16)fcos(2p2 8pi/10)2 i sin(2p2 8pi/10)g,
which is numerically equivalent to exp(20:16)fcos(8pi/10)2
i sin(8pi/10)g. This eigenvalue is proportional to

ga11(to 5 4tu), so the eigenanalysis routine interprets

the eigenvector associated with it as ua11, the complex

conjugate of ua. When this happens, that is, forp/Im(ba)#

to , 2p/Im(ba), the estimated mode u0
a and its estimated

adjoint v0a must be replaced by their complex conjugates

to satisfy the tau test.More generally, the truemode ua 5 u0
a

for 2pn/Im(ba)# to , (2n1 1)p/Im(ba), where n is an

integer,ua 5 (u0
a)* for (2n1 1)p/Im(ba)# to , (2n1 2)p/

Im(ba), and similarly with the adjoint.

3. Example 1: Two noninteracting oscillators

Our first example of applying the Nyquist correction

concerns an extremely simple situation of a very long

time series generated by two perfect noninteracting

oscillators. The length of the time series and the

simplicity of the linear operator were chosen in order

to isolate the Nyquist problem from, for example,

sampling issues. We numerically generate Eq. (1),

specifying
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L5

0
BBB@

20:1 2p/14 0 0

2p/14 20:1 0 0

0 0 20:2 22p/10

0 0 2p/10 20:2

1
CCCA, (7a)

and stochastic forcing such as to yield a time series with

autocovariance matrix

C(0)5

0
BBB@

8:75 1:25 0 0

1:25 8:75 0 0

0 0 5:25 0:75

0 0 0:75 5:25

1
CCCA. (7b)

This is done using the stationary fluctuation–dissipation

relation to estimate Q:

2Q5LC(0)1C(0)LT . (8)

The multivariate time series was generated using a

stochastic Euler scheme (Rümelin 1982) with a time

step of (1/120) time units and output was sampled every

time unit, that is, every 120 time steps, for a total of

50 000 samples. To test for any sampling issues, calcu-

lations were performed with a time series half this long

and yielded similar results. Sampling issues have been

discussed elsewhere (Penland and Sardeshmukh 1995b;

Penland and Matrosova 2001).

This operator L has four eigenvalues, b1,2 520:16
i(2p/14) and b3,4 520:26 i(2p/10), associated with four

eigenmodes that are the complex conjugates of their

corresponding adjoints. Henceforth, we use2sa to de-

noteRe(ba) andva to denote Im(ba).Note thatweexpect

Nyquist lags at to 5 5 and 7, and again at to 5 10 and 14.

LIM was applied to this output using 15 values of to,

that is, to 5 1, 2, 3, . . . , 13, 14, 15. Figure 1 shows the

Euclidean (L2) norm of the matrix L resulting from the

raw estimation of its eigenstructure as a function of to
using Eqs. (3)–(5). The norm is constant with respect to

to and equal to the norm of the specified L until to equals

the smallest Nyquist lag, after which there is clear de-

viation from the specified value. Figure 2a shows the raw

estimation (blue dots) of s1,2 and jv1,2j compared with

the specified values ofs1,2 5 0:1 and jv1,2j5 2p/14.While

s1,2 is well estimated at all lags to, the raw estimation of

jv1,2j is accurate only up to the Nyquist lag to 5 7. Be-

tween to 5 7 and to 5 14, the correct value of jv1,2j is
recovered by subtracting the estimated value ve from

2p/to, that is, jv1,2j5 2p/to 2ve. Between to 5 14 and

to 5 18, the correct value of jv1,2j is recovered by adding

2p/to to the estimated valueve, that is, jv1,2j5 2p/to 1ve

(not shown here, but see Fig. 2b). Figure 2b is analogous

to Fig. 2a, but for s3,4 and jv3,4j, where the Nyquist lags

shown here are at to 5 5 and 10.

Turning to themodes, we compare the estimated u1 as a

function of to, for to 5 3, 8 , and 15, with the analytically

derived, normalized value of u1 5 (12 i, 11 i, 0, 0)T/2 in

Fig. 3. As expected, the real part of u1 is well reproduced

at all lags to, even though to 5 15 is larger than the decay

time (1/s1) of that mode. The imaginary part of that

eigenmode, however, undergoes a sign change at to 5 8

before reverting back to the derived value at to 5 15.

The same type of behavior is noted for u3 (Fig. 4),

even though the decay time of this mode is less than half

of to 5 13. The analytically derived expression for u3

is u3 5 (0, 0, 11 i, 12 i)T/2. We note that the results for

a value of to so much larger than the decay time of the

mode is only possible with very long time series. What

generally happens with time series of realistic length is

that at to near the Nyquist lag, the imaginary part of the

estimated eigenvalue g0a(to) is returned as p and the

imaginary part of the estimated mode ua is returned

as zero.

Fortunately, the recombination of the operator L

is independent of normalization. Figure 1 shows that

the L2 norm of L for to 5 1 to 14 with the eigenvalues

and eigenvectors properly adjusted agrees quite well

with the specified value except at the Nyquist lags

to 5 5, 7, 10, and 14. Of course, the L2 norm is inde-

pendent of the sign of its elements, so we consider a

stricter criterion. Figure 5 shows the bubble plots of L

for the various cases. Here, the diameter of a circle

rather than the area is proportional to the corresponding

FIG. 1. Specified Euclidean norm of matrix L [Eq. (7a): dotted

line]. Also shown: Euclidean norm of the raw estimation of L (filled

circles) and of L after adjustment of modes and eigenvalues (filled

squares).
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element of L in order to highlight the differences.

Figures 5a–c show the recombined L derived from the

raw LIM results for to 5 3, 8, and 13. Figure 5d shows

the bubble plot of the specified L. Figs. 5e,f show the re-

combined L derived from the results for to 5 8, 13 after

proper adjustments of the eigenvalues and eigenvectors.

Again, the results of this section were obtained with

very long time series, and we note here the findings of

Penland and Sardeshmukh (1995b) that recombined

products of the eigenanalysis performed with LIM on

time series of more usual length are more accurate than

any of the individual modal products themselves.

4. Example 2: A reduced model of El Niño

Penland andMatrosova (2006) showed that El Niño as
represented in sea surface temperature (SST) data could

be well approximated as a six-component system

consisting of three empirical eigenmode pairs. This six-

component system, a subset of modes estimated using

LIM applied to SSTs in the tropical belt, described the

nonnormal evolution from an optimal initial condition

to a mature El Niño pattern. It is not the purpose of this

article to consider the El Niño phenomenon; rather,

this six-component system is an ideal showcase for the

uncertainties and Nyquist issues encountered when

LIM is applied in a realistic situation.

LIM was applied to three-month running mean SST

anomalies from the Comprehensive Ocean–Atmosphere

Data Set (COADS) monthly SST data between 1950

and 1997 (Woodruff et al. 1993), concatenated with

three years (1998–2000) of a real-time surface marine

data product from the National Centers for Environ-

mental Prediction (NCEP), for a total of 598 samples.

FIG. 2. Comparison of raw estimation of LIM eigenvalues (blue dots) with adjustment of imaginary parts, first by

subtracting the estimated value from 2p (red dots) and then by adding the estimated value to 2p (purple dots).

(a) Decay rate and frequency of first modal pair. (b) Decay rate and frequency of second modal pair.

FIG. 3. Real (blue lines) and imaginary parts (red lines) of mode u1 estimated using (a) to 5 3, (b) to 5 8, and (c) to 5 15.

The analytically derived, normalized value of mode u1 is (1 2 i, 1 1 i, 0, 0)T/2.
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The running mean was required to allow subsurface

dynamical information time to migrate into the SST

while maintaining a time series long enough to per-

form the LIM procedure. (Modern applications of LIM

to El Niño take advantage of subsurface reanalyses

which were not available to Penland and Sardeshmukh

in 1995, on which the 2006 study was based.) Details of

the data analysis are found in Penland and Matrosova

(2006). The characteristics of this three-modal pair sys-

tem as estimated using to 5 4 months are summarized in

Table 1. Please note that the decay times associated with

these modes are smaller than the periods. In particular,

the decay time of the most rapidly oscillating mode (decay

time 5 6.8 months; period 5 23.3 months) is more than

three times smaller than the oscillation period. Never-

theless, we shall see that the time scales of this mode are

reasonably independent of to until lags are similar to the

smallest Nyquist lag of about 11 months. LIM was ap-

plied to the data at values of to 5 32 14 months, and a

plot of the L2 norm of the resulting linear operators

shows significant violations of the tau test at about tau 5
10 months (Fig. 6), which we explain either as an artifact

FIG. 4. As in Fig. 3, but for u3. The derived value of u3 is (0, 0, 1 1 i, 1 2 i)/2.

FIG. 5. Bubble plots representing specified [Eq. (7a)], estimated, and adjusted matrices L. Diameter is proportional to element size.

Blue: negative elements. Red: Positive elements. (top) Estimated matrices using (a) to 5 3, (b) to 5 8, and (c) to 5 13. (bottom)

(d) Specified matrix L. (e) Adjusted matrix for to 5 8. (f) Adjusted matrix for to 5 13.
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of the three-month running mean, to the inability of

LIM to identify unambiguously the modes from a short

time series, or both.

To test the vagaries of LIM applied to a time series of

typical length, we use the constant matrices L and Q as

estimated from the SST data using LIM at to 5 4months

to run an ensemble of 50 simulations of Eq. (1), each

having 600 samples. Figure 7 reproduces the informa-

tion in Fig. 6 along with the spread of L2 norms resulting

from applying LIM to this ensemble at to 5 4 months

and to 5 10 months. It is clear that uncertainties in the

estimation of L become very large in a short time series

as the Nyquist lag is approached, and that the L2 norms

resulting from the data analysis are well within the

ensemble spread of the simulations.

One implication of this result is that there is no simple

way to adjust the modes estimated with values in the

vicinity of the Nyquist lag when the time series is short

enough to make those modes highly uncertain. What we

can do is look at the time scales associated with the ei-

genvalues. Figure 8 shows the decay time and period of

the most rapidly varying mode as estimated by LIM from

the COADS data as function of to. We note that these

curves are flattest when to takes values of 6–8 months,

in agreement with Penland and Sardeshmukh’s (1995b)

result that the eigenvalues aremost accurately estimated

when the decay time is approximately equal to to. We

also see that the decay time curve deviates from a flat

line much less than the curve of estimated periods, par-

ticularly after the Nyquist lag, and that the adjustment

to the imaginary part of the eigenvalue suggested above

ameliorates the sharp variation of the estimated period

with to after to 5 11 months. As for as the modes them-

selves, it may not be reasonable to estimate them accu-

rately if two thirds of them have decay times less than

to although (not shown) they are indeed visually similar

to the corresponding complex conjugates of modes

estimated for to less than 9 months.

5. Conclusions

LIM has been shown to be a useful diagnostic and

predictive tool in geophysics specialties as diverse as

megadroughts (e.g., Ault et al. 2018, summarized in

Physics Today 2018), anthropogenic forcing of global

change (e.g., Frankignoul et al. 2017), planetary turbu-

lence (e.g., DelSole and Farrell 1996), monsoon pre-

cipitation (e.g., Priya et al. 2015), ocean–atmosphere

coupling (e.g., Smirnov et al. 2014), ElNiño (e.g., Penland
and Sardeshmukh 1995a), and midlatitude low-frequency

variability (e.g., Penland andGhil 1993). An integral part

of LIM concerns validation of its underlying assumption

TABLE 1. Time scales of empirically derived modes.

Modal pair Decay time (months) Period (months)

1/2 15.6 223.3

3/4 12.7 56.2

5/6 6.8 23.3

FIG. 6. Euclidean norm of an operator representing a reduced

model of El Niño.

FIG. 7. As in Fig. 6, but on a log plot showing Euclidean norms

from a numerically generated ensemble of 50 Ornstein–Uhlenbeck

processes evaluated using to5 4months (crosses) and to5 10months

(filled symbols).
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of linearity. Since the definition of an exponential func-

tion is the unique solution of a linear equation, estab-

lishment that the autocovariance matrix function of a

dataset follows an exponential law is strong indication

of linearity. The test for this exponential law is called

the ‘‘tau test,’’ and, although this test may generally be

trusted when it passes, this test has been shown to fail

sometimes when it ought to pass.

There are several reasons why failure can occur even

when the linearity assumption is true, the most perni-

cious of which may be the Nyquist issue. Unfortunately,

in spite of repeatedwarnings in the literature, the Nyquist

issue in LIM is often underappreciated to the extent that

some practitioners of the method have lately expressed

some surprise when apprised of it. This article discusses

the issue in detail and presents a possible solution when

the time series is long enough to apply it; that is, when

the time series and the dynamical decay times associated

with it are long enough to identify the modes uniquely.

As with all analyses, the LIM technique has its draw-

backs, and the Nyquist issue is one of them. The Nyquist

issue plagues not only LIM, but other techniques such

as generalized equilibrium feedback analysis (GEFA;

Liu et al. 2012a) and, as is well known, Fourier analysis.

It is as tempting to ignore the limitations of a powerful

technique when one uses it as it is to emphasize them

when the results are unpopular. Dispassionate analysis

requires careful consideration of the techniques used,

and we hope that awareness of the Nyquist issue in LIM

will help researchers to avoid misinterpretation of LIM

results.
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